ニシヤマ キョウ
NISHIYAMA Kyo
西山 享 所属 青山学院大学 理工学部 数理サイエンス学科 職種 教授 |
|
言語種別 | 英語 |
発行・発表の年月 | 2024/02 |
形態種別 | 学術雑誌 |
査読 | 査読あり |
標題 | Action of Hecke algebra on the double flag variety of type AIII |
執筆形態 | 共同 |
掲載誌名 | Advances in Applied Mathematics |
掲載区分 | 国外 |
出版社・発行元 | Elsevier |
巻・号・頁 | 153 |
総ページ数 | 19 |
国際共著 | 国際共著 |
著者・共著者 | Lucas Fresse, Kyo Nishiyama |
概要 | Abstract: Consider a connected reductive algebraic group G and a symmetric subgroup K. Let X=K/BK×G/P be a double flag variety of finite type, where BK is a Borel subgroup of K, and P a parabolic subgroup of G. A general argument shows that the orbit space CX/K inherits a natural action of the Hecke algebra H=H(K,BK) of double cosets via convolutions. However, it is a quite different problem to find out the explicit structure of the Hecke module. In this paper, for the double flag variety of type AIII, we determine the explicit action of H on CX/K in a combinatorial way using graphs. As a by-product, we also get the description of the representation of the Weyl group on CX/K as a direct sum of induced representations. |